Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 1991 Jun; 28(3): 203-9
Article in English | IMSEAR | ID: sea-28613

ABSTRACT

Effects of gamma-rays and glucose analogs, 2-deoxy-D-glucose (2-DG), 5-thio-D-glucose (5-TG) and 3-O-methyl glucose (3-O-MG) on cellular energy metabolism have been studied in a cell line, derived from a human cerebral glioma, by analysing intermediates of glycolysis and some important nucleotides (ATP, NAD etc.) using the technique of isotachophoresis. Gamma-irradiation induced a transient decrease in the nucleotide levels accompanied by an accumulation of sugar phosphates, the nucleotide levels recovering in a few hours post-irradiation. 2-DG inhibited glycolysis and reduced the nucleotide levels of irradiated as well as unirradiated cells in a concentration-dependent manner both in presence and absence of respiration, whereas 5-TG and 3-O-MG did not show significant effects in the presence of respiration. Reduced energy status observed with 2-DG under respiratory proficient conditions was completely reversed in 2 hr following its removal, whereas such a recovery was not observed in the absence of respiration. These results have important implications in the energy-linked modifications of tumour radiation response using glucose analogs.


Subject(s)
3-O-Methylglucose , Adenine Nucleotides/metabolism , Brain Neoplasms , Cell Line , Deoxyglucose/pharmacology , Energy Metabolism/drug effects , Gamma Rays , Glioma , Glucose/analogs & derivatives , Humans , Methylglucosides/pharmacology , Radiation-Sensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL